Mice survive brain cancer tumors lacking key surface proteins

Monday, July 25, 2016
CLEVELAND – July 22, 2016 – A new scientific study has characterized a checkpoint protein that allows certain brain tumor cells to avoid the immune system. Tumors regularly avoid detection by decorating themselves with proteins that mimic those found on healthy cells. This protective shield allows them to grow undetected, often with deadly results. Brain tumors contribute to approximately 17,000 deaths annually with over 4,600 children newly diagnosed each year, according to the American Brain Tumor Association.

Tumors regulate their defensive shields by coordinating cascades of protein signals. These signals are often under the control of central coordinator proteins called serine/threonine kinases.

In the study published in the July 2016 edition of Science, researchers studied a protein called cyclin-dependent kinase 5 (Cdk5), a serine/threonine kinase that is essential for nerve and tumor cell development. The researchers specifically explored the role of Cdk5 in the development of medulloblastoma, a common, fast-growing pediatric brain tumor.

The researchers investigated Cdk5 because it is “commonly expressed in abundance and high Cdk5 levels correlate with a worse clinical prognosis in patients with melanoma, brain, breast, and lung cancers,” explained Alex Huang, MD, PhD, associate professor of pediatrics, pathology, and biomedical engineering at the School of Medicine, and co-senior author of the study. Agnes Petrosiute, MD, assistant professor of pediatrics at the School of Medicine, was the other senior author. Both are also pediatric oncologists at the Angie Fowler Adolescent & Young Adult Cancer Institute at University Hospitals Rainbow Babies & Children’s Hospital.

Download full release


<< Back

You must be logged in to view this item.



Login

This area is reserved for members of the news media. If you qualify, please update your user profile and check the box marked "Check here to register as an accredited member of the news media". Please include any notes in the "Supporting information for media credentials" box. We will notify you of your status via e-mail in one business day.